\(\int \frac {(a+b \log (c x^n))^2}{(d+e x)^2} \, dx\) [103]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 77 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2} \, dx=\frac {x \left (a+b \log \left (c x^n\right )\right )^2}{d (d+e x)}-\frac {2 b n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{d e}-\frac {2 b^2 n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d e} \]

[Out]

x*(a+b*ln(c*x^n))^2/d/(e*x+d)-2*b*n*(a+b*ln(c*x^n))*ln(1+e*x/d)/d/e-2*b^2*n^2*polylog(2,-e*x/d)/d/e

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {2355, 2354, 2438} \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2} \, dx=-\frac {2 b n \log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d e}+\frac {x \left (a+b \log \left (c x^n\right )\right )^2}{d (d+e x)}-\frac {2 b^2 n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d e} \]

[In]

Int[(a + b*Log[c*x^n])^2/(d + e*x)^2,x]

[Out]

(x*(a + b*Log[c*x^n])^2)/(d*(d + e*x)) - (2*b*n*(a + b*Log[c*x^n])*Log[1 + (e*x)/d])/(d*e) - (2*b^2*n^2*PolyLo
g[2, -((e*x)/d)])/(d*e)

Rule 2354

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[Log[1 + e*(x/d)]*((a +
b*Log[c*x^n])^p/e), x] - Dist[b*n*(p/e), Int[Log[1 + e*(x/d)]*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[
{a, b, c, d, e, n}, x] && IGtQ[p, 0]

Rule 2355

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_))^2, x_Symbol] :> Simp[x*((a + b*Log[c*x^n])
^p/(d*(d + e*x))), x] - Dist[b*n*(p/d), Int[(a + b*Log[c*x^n])^(p - 1)/(d + e*x), x], x] /; FreeQ[{a, b, c, d,
 e, n, p}, x] && GtQ[p, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps \begin{align*} \text {integral}& = \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{d (d+e x)}-\frac {(2 b n) \int \frac {a+b \log \left (c x^n\right )}{d+e x} \, dx}{d} \\ & = \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{d (d+e x)}-\frac {2 b n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{d e}+\frac {\left (2 b^2 n^2\right ) \int \frac {\log \left (1+\frac {e x}{d}\right )}{x} \, dx}{d e} \\ & = \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{d (d+e x)}-\frac {2 b n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{d e}-\frac {2 b^2 n^2 \text {Li}_2\left (-\frac {e x}{d}\right )}{d e} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.05 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2} \, dx=\frac {\left (a+b \log \left (c x^n\right )\right ) \left (a e x+b e x \log \left (c x^n\right )-2 b n (d+e x) \log \left (1+\frac {e x}{d}\right )\right )-2 b^2 n^2 (d+e x) \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d e (d+e x)} \]

[In]

Integrate[(a + b*Log[c*x^n])^2/(d + e*x)^2,x]

[Out]

((a + b*Log[c*x^n])*(a*e*x + b*e*x*Log[c*x^n] - 2*b*n*(d + e*x)*Log[1 + (e*x)/d]) - 2*b^2*n^2*(d + e*x)*PolyLo
g[2, -((e*x)/d)])/(d*e*(d + e*x))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.40 (sec) , antiderivative size = 369, normalized size of antiderivative = 4.79

method result size
risch \(-\frac {b^{2} \ln \left (x^{n}\right )^{2}}{e \left (e x +d \right )}-\frac {2 b^{2} n \ln \left (x^{n}\right ) \ln \left (e x +d \right )}{e d}+\frac {2 b^{2} n \ln \left (x^{n}\right ) \ln \left (x \right )}{e d}-\frac {b^{2} n^{2} \ln \left (x \right )^{2}}{e d}+\frac {2 b^{2} n^{2} \ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{e d}+\frac {2 b^{2} n^{2} \operatorname {dilog}\left (-\frac {e x}{d}\right )}{e d}+\left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 a \right ) b \left (-\frac {\ln \left (x^{n}\right )}{e \left (e x +d \right )}+\frac {n \left (-\frac {\ln \left (e x +d \right )}{d}+\frac {\ln \left (x \right )}{d}\right )}{e}\right )-\frac {{\left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 a \right )}^{2}}{4 \left (e x +d \right ) e}\) \(369\)

[In]

int((a+b*ln(c*x^n))^2/(e*x+d)^2,x,method=_RETURNVERBOSE)

[Out]

-b^2*ln(x^n)^2/e/(e*x+d)-2*b^2/e*n*ln(x^n)/d*ln(e*x+d)+2*b^2/e*n*ln(x^n)/d*ln(x)-b^2/e*n^2/d*ln(x)^2+2*b^2/e*n
^2/d*ln(e*x+d)*ln(-e*x/d)+2*b^2/e*n^2/d*dilog(-e*x/d)+(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn
(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*a)*b*(-ln(x^n)/e/(
e*x+d)+1/e*n*(-1/d*ln(e*x+d)+1/d*ln(x)))-1/4*(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csg
n(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*a)^2/(e*x+d)/e

Fricas [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{2}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))^2/(e*x+d)^2,x, algorithm="fricas")

[Out]

integral((b^2*log(c*x^n)^2 + 2*a*b*log(c*x^n) + a^2)/(e^2*x^2 + 2*d*e*x + d^2), x)

Sympy [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2} \, dx=\int \frac {\left (a + b \log {\left (c x^{n} \right )}\right )^{2}}{\left (d + e x\right )^{2}}\, dx \]

[In]

integrate((a+b*ln(c*x**n))**2/(e*x+d)**2,x)

[Out]

Integral((a + b*log(c*x**n))**2/(d + e*x)**2, x)

Maxima [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{2}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))^2/(e*x+d)^2,x, algorithm="maxima")

[Out]

-2*a*b*n*(log(e*x + d)/(d*e) - log(x)/(d*e)) - b^2*(log(x^n)^2/(e^2*x + d*e) - integrate((e*x*log(c)^2 + 2*(d*
n + (e*n + e*log(c))*x)*log(x^n))/(e^3*x^3 + 2*d*e^2*x^2 + d^2*e*x), x)) - 2*a*b*log(c*x^n)/(e^2*x + d*e) - a^
2/(e^2*x + d*e)

Giac [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{2}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))^2/(e*x+d)^2,x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)^2/(e*x + d)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2} \, dx=\int \frac {{\left (a+b\,\ln \left (c\,x^n\right )\right )}^2}{{\left (d+e\,x\right )}^2} \,d x \]

[In]

int((a + b*log(c*x^n))^2/(d + e*x)^2,x)

[Out]

int((a + b*log(c*x^n))^2/(d + e*x)^2, x)